Distributed Data Fusion in a Ground Sensor Network
نویسندگان
چکیده
In order to fuse data from a distributed sensor system, different fusion architectures can be chosen. In this work, distributed data fusion has been applied to data from a ground sensor network. Measurements have been made using five seismic and five acoustic sensor nodes, each consisting of three sensors, on vehicles of five different types. The data were analyzed off-line to achieve tracking and classification of the vehicles. The tracking was made using standard Kalman filters, and classification was made by a combination of a Bayes’ classifier and voting. The information system, which made distributed data fusion possible, was based on a combination of intelligent agents and a distributed look-up table for data storage and retrieval. The results indicate that this system can operate on-line with a high accuracy in both tracking and classification.
منابع مشابه
Uncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1
In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...
متن کاملDistributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملGround Target Detection, Classification and Sensor Fusion in Distributed Fiber Seismic Sensor Network
This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. ...
متن کامل